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Exam info

 December 14, 12:15-3:15 pm, Bishop Auditorium

— If you can’t make this time, please let CAs know
Immediately to arrange an earlier time slot

— You'll have three hours, but based on past experience,
most students won’t use that much time

* Practice exam questions (and solutions) on
course web site

— Most questions will require a sentence or two to
answer

— You will not need to code during the exam

* Closed book, but you can bring one double-sided
or two single-sided pages of notes
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« Structure refinement with unknown view angles
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Overview of cryo-electron microscopy
(cryo-EM)



The basic idea

We want the structure of a “particle”. a molecule (e.g., protein) or a well-defined
complex composed of many molecules (e.g., a ribosome)

We spread identical particles out on a film, and image them using an electron
microscope

The images are two-dimensional (2D), and each particle is positioned with a different,
unknown orientation.

Given enough 2D images of particles, we can computationally reconstruct the 3D
shape of the particle
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Images

Image from Joachim Frank
http://biomachina.org/courses/structures/091.pdf



A high-end cryo-electron

microscope

v

‘2 —




Dramatic recent improvements

« Cryo-EM has been around for decades, but it has
iImproved dramatically in recent years due to:

— |Invention of better cameras

« Until around 2008, electrons were detected either by
photographic film, or by scintillator-based digital cameras
that converted electrons to photons for detection

* New “direct-electron detectors” can detect electrons
directly, substantially improving image resolution and quality

— Better computational reconstruction techniques

* Cryo-EM is thus coming into much wider use, and
may challenge crystallography as the dominant
experimental method for determining molecular
structure.



Comparison to x-ray crystallography

Cryo-EM’s major advantage over crystallography is that it does
not require formation of a crystal

— Particularly advantageous for large complexes, which are usually difficult
to crystallize

— Also avoids structural artifacts due to packing in a crystal lattice. In EM,
particles are in a more natural environment.

On the other hand:

— Cryo-EM’s resolution is usually worse than that of crystallography

— Reconstructing structures of small proteins from EM images is difficult,
because images from different orientations look similar (i.e., “a blob”)

Bottom line: Cryo-EM is particularly advantageous for larger
complexes/molecules, because:
— They tend to be harder to crystallize

— The computational reconstruction problem in cryo-EM is usually easier ,,
to solve for large, asymmetric particles than for small ones



Cryo-EM images are projections



Cryo-EM uses fransmission electron
mIicroscopy

* |In transmission electron microscopy, a beam of
electrons passes through a thin sample before

forming an image

Transmission electron microscopy
g g |

http://www.newscientist.com/data/images/ns/cms/

dn14136/dn14136-1 788.jpg 12

http://www.cas.miamioh.edu/~meicenrd/ANATOMY/
Ch2 Ultrastructure/Tempcell.htm



Cryo-EM images are projections

« Each recorded 2D image is thus a projection of
the 3D shape (density) we want to reconstruct

— That is, we can think of each pixel value in the 2D
image as a sum of the values along a line through the
3D sample (in the direction of the electron beam)
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From Joachim Frank, Three-dimensional electron microscopy of macromolecular assemblies: Visualization of biolc%éical
molecules in their native state, 2006



In transmission EM, the
image would look more
like an “x-ray” of the
bunny than a shadow of
the bunny

Figure 5.1 A single projection image is plainly insufficient to
infer the structure of an object. (Note, though, that TEM
projections do not merely give the outline, as in this drawing,
but internal features, too—the bones and internal organs of
the rabbit, which we would see if the projector were to emit
X-rays.) (Drawing by John O'Brien; © 1991 The New Yorker.)

From Joachim Frank, Three-dimensional electron microscopy of macromolecular assemblies: Visualization of bio/c%_g]ical
molecules in their native state, 2006



Vitrification

« To survive in the electron microscope (in a vacuum,
under electron bombardment), particles are
embedded in ice

 The sample is cooled extremely quickly (“flash
frozen™), so the ice is “vitreous” (i.e., not crystalline)

* High-resolution single-particle EM relies on this
“vitrification” process and is thus referred to as
cryogenic electron microscopy (cryo-EM)



Computational reconstruction methods



Overview of computational methods

« 2D image analysis: First, go from raw image data
to higher-resolution 2D projections

Image preprocessing
Particle picking
Image clustering and class averaging

3D reconstruction: Then use these higher-

resolution projections to build a 3D model

Background: Reconstruction with known view angles
Structure refinement with unknown view angles
Calculating an initial structure

Fitting atomic-resolution models to lower-resolution EM
structures

Capturing multiple conformations 18



2D image analysis



The raw images don’t look so good

Image from Joachim Frank
http://biomachina.org/courses/structures/091.pdf 20

Before attempting any 3D reconstruction, we do several types of processing on the images




Computational reconstruction methods
2D image analysis

Image preprocessing



Image preprocessing

* Problem 1: The sample tends to move slightly
during imaging, blurring the image
« Solution
— Direct electron detectors are fast enough to record a
movie instead of a single image
— Align the movie frames computationally, then average
them together

22



Image preprocessing

* Problem 2: Overall brightness is often non-
uniform (due to uneven illumination or sample

thickness)
« Solution: high-pass filter the image

Cheng et al., Cell 161:438 (2015)

23



Image preprocessing

* Problem 3: The optics cause the recorded image to be a blurred version of

the ideal image

— This blurring is a convolution, and can thus be expressed as a multiplication in the
frequency domain, where the ideal image is multiplied by the “contrast transfer

function”
» Solution: Estimate parameters of the contrast transfer function, then correct

for it
— Some of the parameters are known (from the optics), while others are estimated
from the images

— Correction is generally done in the frequency domain

A typical contrast transfer function,
in the frequency domain (zero
frequency at the center)

https://en.wikipedia.org/wiki/Contrast_transfer_function



Computational reconstruction methods
2D image analysis

Particle picking



Pick out the particles in the 2D images

Image from Joachim Frank
http://biomachina.org/courses/structures/091.pdf



Particle picking results

Image from Joachim Frank 27

http://biomachina.org/courses/structures/091.pdf



Particle picking methods

 Particle picking can be difficult,
because the images are low-
contrast and noisy

— Images may also have
contaminants that should be
ignored

« Avariety of automated and semi-
automated methods have been
developed

— For example, matching to
templates, or picking out high-
contrast regions

— Some particles are often still
packed manually to seed
automated methods with suitable 28
templates

Contaminant Particle of interest

Cheng et al., Cell 2015



Image clustering and class averaging

29



Averaging similar images reduces noise

10 copies of the 8 types of heads + random noise

ARG, * 3 WL, O R,

Image from Joachim Frank
http://biomachina.org/courses/
structures/091.pdf

e The images in each row above represent the same ideal image but with
different corrupting noise

e If we average the images in each row (that is, average corresponding pixels), we
end up with a less noisy image, because the noise in the different images tends
to cancel out



Goal: cluster the particle images into
classes of similar images

Group together images with similar view angles

— Then align them to one another and average them
together to reduce noise

To do this, divide images into several classes (with

each class representing a set of similar view angles)

We need to determine both what the classes are
and which images should be assigned to each class

This is a clustering problem

— Group images such that the images within a group are
similar, but images in different groups are different

— In machine learning terminology, this is “unsupervised
learning”

31



Standard approach: k-means clustering

* Pick k random images as class exemplars

* Then iterate the following:
— Assign each image to the closest exemplar
— Average all the images in each class to determine a new class exemplar

 Notes:

In the assignment step, we need to align each particle image against
the exemplar images

We need to specify the number of classes (k) in advance, or experiment
with different values of k

k-means clustering is guaranteed to converge, but not guaranteed to
find a globally optimal solution

Indeed, the solution may depend heavily on the initialization conditions,
and may be heavily suboptimal

32



Caveat: Potential model bias in clustering/alignment

Ali

Base | | Noisy n to

25 100 250 1000 2000

Image from Steve Ludtke
http://biomachina.org/courses/structures/091.pdf

In this case, the images are just noise, but by selecting images and
alignments that best match a given template, we get a class average

that looks like the template.
33


http://biomachina.org/courses/structures/091.pdf

Avoiding these problems

A variety of more
sophisticated clustering
methods ameliorate these
problems

— Some involve modifications to
k-means (e.g., the lterative
Stable Alignment and
Clustering method)

— Some involve principal
Components ana'ysis or Other Figure 4.14 Checkerboard display of local averages (calcium

release channel), each computed from images falling on a

d | mens | ona | |ty red u Ct| on grid in factor space (factors 1 versus 2). The number on top
. of each average indicates the number of images falling into
tech N |q ues that grid space. Empty regions are bare of images. The

distinction of main interest is between molecules lying in
different orientations, related by flipping. It is seen from the

- S ome rece nt m eth Od S peripheral pinwheel f’eatures pointing either clockwise (on the

left) or counterclockwise (on the right). From Frank et al. (

el | m | nate th |S ave rag | ng Step 1996 ), reproduced with permission of-EIsevier.

Optional material



Class averaging results

Cheng, Cell 161:450 (2015)

These are considered good class averages
(from a high-resolution single-particle EM study)

35



3D reconstruction

36



Problem

Original image

« Suppose you're given
many projections of a
2D image, and you
want to reconstruct the
original image. How
would you do it?

Projections

* Discuss:
— How could you do this if you know the view angle for
each projection?
— How could you do this if you don’t know the view
angles?

37



Background: Reconstruction with known
view angles

38



Suppose you knew the view angle for
each particle image

 How would you reconstruct the 3D density map
from 2D projections?

— Same problem is encountered in medical imaging
(e.g. in CT scans, which are basically 3D x-rays)
* One approach would be back-projection: reverse
the projection process by “smearing” each
projection back across the reconstructed image

39



Back-projection

Reconstructions based on different
Original image numbers of projections (2, 4, 8, 16, 32)

Projections

http://www.impactscan.org/slides/impactcourse/basic_principles_of ct/img12.html

The result of back-projection is a blurred version of the original image. 40
How can we fix this?



Filtered-back projection

* |t turns out we can fix this problem by applying a
specific high-pass filter to each image before
back-projection. This is filtered back-projection.

128

no filtering

41

http://www.impactscan.org/slides/impactcourse/basic_principles_of_ct/img15.gif



Why does filtered back-projection work?

(Optional Material)

* To answer this, use the projection slice theorem

Projection slice theorem (2D version):
The 1D Fourier transform of any
projection of a 2D density is equal to the
central section—perpendicular to the
direction of projection—of the 2D
Fourier transform of the density

Directions
of view

struct

Transmission
image is a
projection

This theorem holds because each of the 2D
o i . : sinusoids used in the 2D Fourier transform is
iy, constant in one direction

of a projection
gives
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> 42

DeRosier & Klug, Nature 217 (1968) 133




Why does filtered back-projection work?

(Optional Material)

» Back-projection is equivalent to filling in
central sections in the Fourier domain %

* The problem is that when reconstructing W
by back-projection, we overweight the low-
frequency values (in the figure, the density ) 4
of dots is greatest near the center)

 To fix this, reduce the weights on low-
frequency components. Q

-_’N

Figure 5.15 The density of sampling points in Fourier space
| | fl |t r h row ||n r| Wlth fr n i obtained by projections decreases with increasing spatial
dea ers ape g Oows ca y eq ue Cy frequency. Although this is shown here for single-axis tilting,
SPATIAL DomAI the same is obviously true for all other data collection
FREQUENCY DOMAIN geometries. From Frank and Radermacher ( 1986 ),
reproduced with permission of Springer-Verlag.

Weight Weight

Inverse
Fourier transform

_—
-

Fourier transform

Frank, 2006
Filtered back-projection is a common

technique, but there are several

alternatives, including direct Fourier-
http://jnm.snmjournals.org/cgi/content-nw/full/42/10/1499/F2 domain reconstruction




This carries over to the 3D case

(Optional Material)

Three-dimensional Projection slice theorem (3D version):
__ Fourier transform < . f f
Yot The 2D Fourier transform of any
Losrmaom | projection of a 3D density is equal to the
central section—perpendicular to the
Two-dimensional o } . . . .
Fourier transform direction of projection—of the 3D
=L Fourier transform of the density
Two-dimensional 5 3
; Fourier transform
Inverse three-dimensional j’-_
= Fourier transform k

Figure 5.2 Illustration of the projection theorem and its use
in 3D reconstruction. From Lake ( 1971 ), reproduced with
permission of Academic Press Ltd.

Frank, 2006



Structure refinement with unknown view
angles

45



Refining a structure

 If we're not given the view angles for each particle,
but we have a decent initial 3D model, then iterate
the following steps to improve the model:

— For each projection (i.e., each class average), find the
view angle that best matches the 3D model

— Given the newly estimated view angles, reconstruct a
better 3D model (e.g., using filtered back-projection)

* This is called 3D projection matching

46



An example

Class averages (starting point for reconstruction)

Image from Steve Ludtke
http://biomachina.org/courses/structures/091.pdf

47


http://biomachina.org/courses/structures/091.pdf

Iteration 1

This surface is a contour map. Estimated density is greater than a threshold
value inside the surface and less than that value outside it. “Density” here
corresponds roughly (not precisely) to electron density.

© Steve Ludtke



Iteration 2

© Steve Ludtke



Iteration 3

© Steve Ludtke



Iteration 4

© Steve Ludtke



© Steve Ludtke

Final reconstruction

Protein: GroEL
6.5 A resolution

Ignore the color
coding



Caveat

« Structure refinement methods are prone to
overtitting

— Converged model can show features that don’t really
exist and just reflect noise in the images (analogous to
the issue with image clustering)

— Avariety of methods have been developed recently to
deal with this issue

 Many use Bayesian statistical approaches (e.g.,
RELION software)

53



A high-resolution cryo-EM structure

b \

a-subunit {a

54
A 3.3 Aresolution EM structure Li et al., Nature Methods 10:584 (2013)



A recent development:
Atomic-resolution Cryo-EM

Nakane ... Scheres, Nature, Nov. 5, 2020
Single-particle cryo-EM at atomicresolution

Yip ... Stark, Nature, Nov. 5, 2020
Atomic-resolution protein structure

determination by cryo-EM

* New technology (energy filter and new electron source, camera,
software) allows resolution of 1.2 A in certain cases

Nakane et al,
Nature, 2020

55




Calculating an initial structure

56



How do we get an initial structural model?

* Traditional options:

— Might have an initial model from
prior experimental work (e.g., a
homologous protein)

— Conduct specialized
experiments, often at lower
resolution

 Example: random canonical filt
approach, which requires
collecting each image twice, from
different camera angles

Figure 5.12 Principle of the random-conical data collection:
(a) untilted; (b) tilted field with molecule attached to the
support in a preferred orientation; (c) equivalent projection
geometry. From Radermacher et al. ( 1987 b), reproduced
with permission of Blackwell Science Ltd.

Frank, 2006

57



How do we get an initial structural model?

* Direct computational solutions are becoming practical!

 Example: stochastic gradient descent method
— Choose a 3D model randomly

— Repeat the following two steps:
« Select a random subset of the images
« Adjust the 3D model to maximize probability of observing the selected images

a Ab initio reconstruction
Random .

. g 'uaizaton - Stochastic

3 g \"J gradient

23 < descent

329 9

: Punjani et al.,
Refinement cryoSPARC: algorithms

for rapid unsupervised
cryo-EM structure
determination, Nature

Methods (2017)



Capturing multiple conformations

59



Capturing multiple conformations from a
single cryo-EM dataset

« Each particle is potentially flash-frozen in a
different conformation—so in principle, one could
reconstruct multiple conformations from a cryo-
EM image dataset

« Challenge: We only have one image (projection)
of each particle, and we don’t know in advance
which conformation that particle was in

* Traditional solution: separate particle images into
multiple classes that appear to correspond to
different conformations, then use images in each
class to reconstruct a 3D model .



Recent development: methods that reconstruct
a continuous space of conformations

« Example: CryoDRGN

— Constructs a generative neural network in which several latent variables

determine the 3D structure

* Network parameters are optimized to maximize the likelihood of the
observed images (calculated in Fourier space, taking advantage of the

projection slice theorem)

— By varying the latent parameters, one can move through the predicted

conformational space

Assembly path:

B—Dl—-D2—-D3—-D4—-E3—-ES

Zhong et al.,
CryoDRGN:
reconstruction of
heterogeneous cryo-
EM structures using
neural networks,
Nature Methods ;
(2021)



